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We prove the existence of a function j which is holomorphic exactly in the unit
disk D and has universal translates with respect to a prescribed closed set E … “D

and satisfies j ¥ C.(“D0E). If Q is a subsequence of N0 with upper density
d̄(Q)=1 then the function j can be constructed such that in addition

j(z)=C
.

n=0
anzn with an=0 if n ¨ Q.
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1. INTRODUCTION

In 1929 Birkhoff [1] proved the existence of an entire function j with
the most remarkable property that for every entire function f there exists a
sequence {zn} in C with zn Q. such that

j(z+zn)Q f(z) compactly on C .

There exists an extensive literature on variants and strengthenings of this
result. Also, many other universal properties were investigated; for details
we refer to Grosse-Erdmann [4], where a survey of the various universali-
ties and a full bibliography are given.

For a compact set K in the complex plane C we denote by A(K) the set
of all complex valued functions, which are continuous on K and holo-
morphic in its interior K°. Introducing the uniform norm, A(K) becomes a
Banach space. By M we denote the family of all compact sets which have
connected complement.

In our previous paper [11] the concept of the ‘‘T-universality’’ of a
function on an open set O … C was introduced. Here we are interested in
the following variant of universality.

Definition. Let G … C be a domain and z ¥ “G (where “G is considered
as a subset of the extended plane Ĉ :=C 2 {.}). A function j is called
Tz-universal on G (universal under translates with respect to z) if it is
holomorphic on G and satisfies the following property: For all K ¥M and
all f ¥ A(K) there exist sequences {an} and {bn} with

anz+bn ¥ G for all z ¥K and all n ¥N ,

anz+bn Q z for all z ¥K, nQ. ,

j(anz+bn)Q f(z) uniformly on K, nQ. .

If the function j is Tz-universal on G for all z ¥ “G, then j is shortly called
T-universal on G (see [11]).

In terms of the above definition the Birkhoff function is a T-universal
entire function. The existence of T-universal functions on simply connected
domains G ] C has been proved in [7, 8], and in [11] the authors have
shown that T-universal functions can have lacunary power series expan-
sions.

It is a natural question whether a holomorphic function j can exhibit
universal properties in the sense that it is Tz-universal on G for all z of a
prescribed subset E … “G and such that j is not Tz-universal for all z on the
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complementary boundary part “G0E. If such a phenomenon occurs then
we call j a ‘‘restricted T-universal function.’’

Here we consider the unit disk D :={z: |z| < 1}; if a closed set E …

“D, E ]” is prescribed then it is proved that there exists a function j
which is Tz-universal for all z ¥ E and is not Tz-universal for all
z ¥ F :=“D0E. In addition the function j can be chosen such that it has a
lacunary power series expansion and satisfies j ¥ C.(F). (For the details
see Theorem 3.) The construction of such a function follows by an induc-
tive process, where a Lemma on lacunary polynomial approximation and
the existence of special (unrestricted) T-universal functions on starlike
domains are the essential tools.

2. APPROXIMATION BY LACUNARY POLYNOMIALS

We first prove a result on the approximation of functions by lacunary
polynomials. For a subsequence Q of N0 we denote as usual by d̄(Q) its
upper and by d(Q) its lower density given by

d̄(Q) := lim
nQ.

nQ(n)
n
, d(Q) := lim

nQ.

nQ(n)
n
,

where nQ(n) is the number of m ¥ Q with m [ n. In the case when
d̄(Q)=d(Q) we say that Q has density d(Q)=d̄(Q). Moreover the expres-
sion

dmin(Q) := lim
tQ 1−

3 lim
rQ.

nQ(r)− nQ(rt)
(1−t) r

4

is called the minimal density of Q in the sense of Pólya [13].
The following Lemma—which is of interest in itself—will be frequently

used in the following sections.

Lemma. Suppose that K is a compact set in M with 0 ¥K°, and let K0,
the component of K containing 0, be starlike with respect to 0. Suppose
further that Q is a subsequence of N0 with upper density d̄(Q)=1. Let f be a
function which is holomorphic on K and has near the origin a power series
representation of the form

f(z)=C
.

n=0
fnzn with fn=0 for n ¨ Q.
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Then, for every e > 0, there exists a polynomial P of the form

P(z)=C
.

n=0
pnzn with pn=0 for n ¨ Q (1)

such that

max
K
|f(z)−P(z)| < e .

Proof. According to the Hahn–Banach theorem, it is sufficient to show
that for every bounded linear functional F on C(K) with F(P)=0 for all
polynomials P of the form (1) we have F(f)=0. By the Riesz representa-
tion theorem, every bounded linear functional on C(K) is given by a Borel
measure m on K. So we have to prove that for every Borel measure m on K
with

F
K
zn dm(z)=0 for n ¥ Q (2)

we have

F
K
f(z) dm(z)=0 .

Let a Borel measure m on K with (2) be given, and let

h(z) :=F
K

dm(z)
z−z

for z ¥ Ĉ0K

be the Cauchy transform of m. Then h is holomorphic on Ĉ0K, and for
|z| >maxz ¥K |z| we have

h(z)=F
K

1 − C
.

n=0

zn

zn+1
2 dm(z) (3)

=C
.

n=0

1
zn+1
1 −F

K
zn dm(z)2=− C

n ¨ Q

mn

zn+1
,

where mn :=>Kzn dm(z) for n ¨ Q. Since d̄(Q)=1 and thus d(N0 0Q)=0, a
result of Pólya [14, p. 737, Satz B] shows that h has a simply connected
domain of existence. Therefore, h has a holomorphic extension to Ĉ0K0.
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By our assumptions, K0 is starlike with respect to 0, which implies that
the region S :={s=1/z : z ¥ Ĉ0K0} is also starlike with respect to 0. It is
well known that the Mittag–Leffler transform [5, p. 75]

Ma(s)=C
n ¨ Q

−mn
C(1+n/a)

sn=:− C
n ¨ Q
bn(a) sn

tends to h̃(s)=h(1/s)/s compactly on S for aQ.. Since Ma is entire for
all a > 0, we have, for the entire function Ra(z) :=Ma(1/z)/z in 1/z,

Ra(z)=− C
n ¨ Q

bn(a)
zn+1

(|z| > 0)

and

Ra(z)Q h(z) (aQ.)

compactly on Ĉ0K0.
Let W … C be an open set containing K and such that f is holomorphic

in W. Then there exists a contour C in W0K such that

indC(z)=˛
1, z ¥K

0, z ¨ W

(see, for example, [15, Theorem 13.5]). From Cauchy’s theorem we obtain

f(z)=
1
2pi

F
C

f(w)
w−z

dw

for all z ¥K and

1
2pi

F
C

f(w)
wn+1

dw=fn=0 for n ¨ Q.

Since C … W0K … W0K0 we have uniform convergence of {Ra} on C,
which, together with Fubini’s theorem, yields

F
K
f(z) dm(z)=F

K

5 1
2pi

F
C

f(w)
w−z

dw6 dm(z)

=
1
2pi

F
C

f(w) F
K

dm(z)
w−z

dw
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= lim
aQ.

1
2pi

F
C

f(w)(−Ra(w)) dw

= lim
aQ.

C
n ¨ Q
bn(a)

1
2pi

F
C

f(w)
wn+1

dw=0.

This proves the lemma. L

3. T-UNIVERSAL FUNCTIONS ON STARLIKE DOMAINS

For a sequence {zn} of complex numbers we denote by V({zn}) the set of
all its accumulation points. Using the Lemma of the previous section we
can prove the following result.

Theorem 1. Let G … C, G ] C, be a domain which is starlike with
respect to the origin and let Q be a subsequence of N0 having upper density
d̄(Q)=1. Suppose furthermore that H … G is a domain with E :=
“H 5 “G ]”, that {an} is a sequence in C0{0} with an Q 0 for nQ. and
that {bn} is a sequence in H with V({bn})=E.
Then there exists a function j holomorphic in G with lacunary power series

j(z)=C
.

n=0
jnzn with jn=0 for n ¨ Q (4)

which has the following property: For all K ¥M, for all f ¥ A(K) and for all
z ¥ E there exist subsequences {mk} and {nk} of N with limkQ. bnk=
z , amkz+bnk ¥H for all k ¥N and all z ¥K, and such that

j(amkz+bnk )Q f(z) uniformly on K.

Proof. (1) We choose a sequence {Jn}n ¥N of Jordan domains which are
starlike with respect to 0 with J̄n … Jn+1 … G for all n and the property that
for an arbitrary compact set K … G there exists an N=N(K) such that
K … JN.

Suppose that {z (k)}k ¥N is a sequence of points z (k) ¥ E which is dense in
E. For each k ¥N we select a subsequence {z (k)n }n ¥N of {bn} with
limnQ. z

(k)
n =z

(k) such that for each n ¥N the points z (1)n , ..., z
(n)
n are

pairwise distinct and such that for a subsequence {Jnn} of {Jn} we have
z (k)n ¥ Gn+1 0Gn for k=1, ..., n, where Gn :=Jnn .
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Next we choose radii rn :=`|aan | with the property that the closed disks

Dn, k :={z : |z−z
(k)
n | [ rn}

are pairwise disjoint for k=1, ..., n and that

Sn :=0
n

k=1
Dn, k … Gn+1 0Gn and Sn …H.

(2) We construct a sequence of polynomials {Pn} of the form (1).
Consider any enumeration {Wn} of all polynomials whose coefficients have
rational real and imaginary parts. We set P0 — 0 and assume that for a
n ¥N the polynomials P0, ..., Pn−1 have already been determined. If we
apply the lemma to the function

F(z) :=˛
Pn−1(z) if z ¥ Gn

Wn1
1
aan
(z−z (k)n )2 if z ¥ Dn, k

which is holomorphic on Gn 2 1n
k=1 Dn, k then we can find a polynomial Pn

of the form (1) which simultaneously satisfies

max
w ¥ Ḡn

|Pn(w)−Pn−1(w)| <
1
n2

(5)

and

max
w ¥ Dn, k

:Pn(w)−Wn 1
1
aan
(w−z (k)n )2: <

1
n

for all k=1, 2, ..., n .

By induction, we obtain the sequence {Pn}.
Now we consider the function

j(w) :=C
.

n=1
{Pn(w)−Pn−1(w)} .

It follows from (5) that j is holomorphic on G and it obviously has a
power series representation of the form (4). Furthermore we obtain, for
k=1, 2, ..., n; n=1, 2, ..., the estimates
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max
w ¥ Dn, k

: j(w)−Wn 1
1
aan
(w−z (k)n )2:

[ max
w ¥ Dn, k

: C
.

l=n+1
{Pl(w)−Pl−1(w)}:+

1
n

[ C
.

l=n+1
max
w ¥ Ḡl

|Pl(w)−Pl−1(w)|+
1
n
< C

.

l=n+1

1
l2
+
1
n
<
2
n
.

Consequently, for k=1, ..., n; n=1, ..., we have

max
|z| [ 1/rn

|j(zaan+z
(k)
n )−Wn(z)| <

2
n
. (6)

(3) Now let a compact set K ¥M, a function f ¥ A(K) and a
boundary point z ¥ E be given. By Mergelian’s theorem [3, p. 92; 12] we
find a subsequence {ns} of N such that

max
K
|Wns (z)−f(z)| <

1
s
. (7)

There exists an S=S(K) such that

K … 3z : |z| [ 1
rns
4 for all s > S .

Hence from (6) and (7) we have

max
K
|j(zaans+z

(k)
ns
)−f(z)| <

1
s
+
2
ns

for all s > S and all k=1, ..., ns.
Since the set of points {z (k)ns : k=1, ..., ns; s \ S} has z as an accumulation

point, there exist natural numbers js ¥ {1, ..., ns} such that z (js)ns Q z for
sQ.. Therefore, we have

max
K
|j(zaans+z

(js)
ns
)−f(z)|Q 0 (sQ.) ,

which proves Theorem 1. L
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Remark 1. In general, the lacunary condition d̄(Q)=1 in Theorem 1
cannot be weakened: For the domain G :=C0[1,.), which is obviously
starlike with respect to the origin, it follows from Satz A in [14, p. 737],
that every function j which is holomorphic in G and not entire, has a
power series representation

j(z)=C
.

n=0
jnzn

around 0 such that jn ] 0 for all n ¥ Q, where Q is some subsequence of N0
with d̄(Q)=1, i.e. the nonvanishing coefficients have upper density 1.
Theorem 1 shows in particular that such functions exist and that they in
addition can satisfy universality conditions with respect to the boundary
[1,.).

Moreover, we emphasize that in general the subsequences {mk} and {nk}
in Theorem 1 cannot be chosen to be identical. If, for example, G=D and
an=1/`n , bn=1−1/n, then for no compact set K with 1 ¥K the condi-
tion ankz+bnk ¥D for all z ¥K and infinitely many nk can be satisfied.

We finally mention that it would be interesting to characterize those
simply connected domains G for which the corresponding statements of
Theorem 1 hold.

In Theorem 1 we assumed that G is not the entire plane. In the case of
G=C we have

Theorem 2. Let Q be any subsequence of N0 with upper density d̄(Q)=
1 and let {zn} be any unbounded sequence of complex numbers. Then there
exists an entire function j with lacunary power series

j(z)=C
.

n=0
jnzn with jn=0 for n ¨ Q

which is universal in the double sense that

• The sequence of ‘‘additive translates’’ {j(z+zn)} is dense in A(K) for
all K ¥M.

• The sequence of ‘‘multiplicative translates’’ {j(z · zn)} is dense in A(K)
for all K ¥M with 0 ¨K.

Theorem 2 generalizes the main result of [10], where Q is assumed to
have density d(Q)=1; it is proved by exactly the reasonings as the corre-
sponding particular case with the only change that the Lemma is used
instead of Lemma 2 from [10].
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4. RESTRICTED T-UNIVERSAL FUNCTIONS IN THE UNIT DISK

The following Theorem is our main result.

Theorem 3. Let E … “D be a closed set and define F :=“D0E. Let Q
be a subsequence of N0 with upper density d̄(Q)=1 and suppose that {bn} is
a sequence in D with V({bn})=E and that {an} is a sequence in C0{0} with
an Q 0 for nQ..
Then there exists a function j which is holomorphic exactly on D and has
a lacunary power series

j(z)=C
.

n=0
jnzn with jn=0 for n ¨ Q

such that j belongs to C.(F) and satisfies: For all K ¥M, for all f ¥ A(K)
and for all z ¥ E there exist subsequences {mk} and {nk} of N with
amkz+bnk ¥D for all k ¥N and all z ¥K, limkQ. bnk=z and such that

j(amkz+bnk )Q f(z) uniformly on K.

In particular, the function j is Tz-universal for all z ¥ E and is not
Tz-universal for all z ¥ F.

Proof. We consider a subsequence Q0 …N of Q with density d(Q0)=0
and define the function k by

k(z) := C
n ¥ Q0

zn

n log n
(z ¥D) .

Then, by Fabry’s gap theorem [5, p. 89; 6, pp. 83, 168], k is holomorphic
exactly on D and it obviously satisfies k ¥ C.(“D). We choose a domain G
which is starlike with respect to the origin and satisfies D 2 F … G, E … “G.

Let j0 be a universal function which satisfies the properties of Theorem
1 for the domains G and H=D. It will be shown that the function

j(z) :=j0(z)+k(z)

has all the desired properties. Obviously j is holomorphic exactly on D
and in addition we have j ¥ C.(F), so that j cannot be Tz-universal for
any z ¥ F.

Let be given a compact set K ¥M, a function f ¥ A(K) and a boundary
point z ¥ E. By Theorem 1, there exist subsequences {mk} and {nk} of N
such that (according to the properties of the function j0) the following
conditions hold:

amkz+bnk ¥D for all z ¥K and all k ¥N , lim
kQ.
bnk=z
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and

j0(amkz+bnk )Q f(z)−k(z) uniformly on K.

Hence we have

j(amkz+bnk )Q f(z) uniformly on K,

which proves the result. L

Remark 2. In general the condition d̄(Q)=1 in Theorem 3 cannot be
weakened in the sense that for every (rational) number d ¥ (0, 1) a sequence
Q in N0 exists with d(Q)=d and such that for every function j with
lacunary power series (4) a universality property for E={1} and a non-
universality property for F=“D0{1} as in Theorem 3 cannot hold
simultaneously.

In the case d=1/q, where q ¥N, this is easily seen: For Q=qN0 we
have d(Q)=d. If j is holomorphic in D with (4), then j is a holomorphic
function of zq in D. The condition j ¥ C.(“D0{1}) obviously implies
j ¥ C.(“D) due to the symmetry conditions satisfied by j.

Now we consider the case d=2/3 setting Q={0, 1, 3, 4, 6, 7, ...}. For j
holomorphic in D with (4) we have

j(z)=j1(z3)+zj2(z3) (8)

with j1, j2 being holomorphic in D. If w :=e2pi/3 then

w2j1(z3)=w2j1((wz)3)=w2j(wz)−zj2(z3)

and thus

(1−w2) j1(z3)=j(z)−w2j(wz) .

Therefore, j ¥ C.(“D0{1}) implies that k1 ¥ C.(“D0{1, w−1}), where
kj(z)=jj(z3) for j=1, 2, which again implies k1 ¥ C.(“D) by symmetry.
From (8) it is now easily seen that also k2 ¥ C.(“D), and thus j ¥ C.(“D).

Similar considerations lead to examples of sequences Q for every
d=p/q, where p, q ¥N, p < q (cf. [2]).

The situation changes drastically if we no longer require nonuniversality
on some parts of “D (as in the case E=“D in Theorem 3). In this case, we
have following result.

Theorem 4. Let Q be a subsequence in N0 with minimal density
dmin(Q) > 0, {an} be a sequence in C0{0} with an Q 0 for nQ. and {bn} be
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a sequence in D with V({bn})=E … “D. Then there exists a function j
holomorphic in D with lacunary power series

j(z)=C
.

n=0
jnzn with jn=0 for n ¨ Q

which has the following property: For all K ¥M, for all f ¥ A(K) and for all
z ¥ E there exist subsequences {mk} and {nk} of N with amkz+bnk ¥D for all
k ¥N and all z ¥K, limkQ. bnk=z and such that

j(amkz+bnk )Q f(z) uniformly on K.

The particular case of Theorem 4 when E=“D and where the sequences
{an}, {bn} are not preassigned, is proved in [11, Theorem 2]. Theorem 4 is
proved essentially in the same way using the construction in the beginning
of the proof of Theorem 1 above.

Remark. In a forthcoming article the authors will investigate a similar
question as in Theorem 3 for more general domains.
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